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Abstract—Optimal design of a rigid-plastic stepped beam, loaded by a uniform pressure over a time interval
0st<t, is discussed. Such beam dimensions are sought for which the beam of constant volume attains
minimal central deflection. This optimization problem is solved by the method of mode form solutions.
Exact solutions are also found. By numerical calculations a good accordance between the exact and
approximate solutions is stated.

1. INTRODUCTION

The problem of optimal design of rigid-plastic stepped beams under impulsive loading was
discussed by Lepik and Mré6z[1,2]. In these papers the mode form of motion was assumed.
Exact solutions for this case were obtained by Lepik[3]. The case of pressure loading which is
uniform over the beam and constant during the time interval 0 <¢ <, was examinedin 1,4]. In
the paper[1] a solution for moderate loads was given (in this case we have only stationary
plastic hinges in the beam). By increasing the load intensity moving plastic hinges appear and
the solution of the problem becomes quite complicated. It was shown in the paper[4] that the
mode form solution can also be applied in this case. In that paper the kinetic energies of the
beam for instants £ =£,—0 and ¢ = t,+ 0 were equated. As it follows from the paper[3] better
results can be obtained if we use the condition, suggested by Martin and Symonds[5].

The aim of this paper is to solve the optimization problem in question by the method of
mode form solutions applying the condition by Martin and Symonds and to compare the results
with the exact solutions. The basic equations are derived in Section 2. In Section 3 the loading
stage is considered. Mode form and exact solutions are found in Sections 4 and 5. Numerical
results are discussed in Section 6.

2. BASIC EQUATIONS
Let us consider a rigid-plastic beam of rectangular cross-section with piecewise constant
thickness (Fig. 1(a)). The beam is simply supported at both edges. A uniform pressure load p*,
which is constant during the time interval 0<¢<t, and is taken off at ¢=1¢,, is applied.
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Fig. 1. () Beam dimensions; (b) yield mechanism for 8 <e; (¢) yield mechanism for 8> a.
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Assuming constant volume of the beam, optimal parameters y = h;/h,= | and & = a/l for which
the final deflection in the centre of the beam has minimum value, are to be found.
The equations of motion are

IM* IQ* i w*
== 0% %= ~p*+pBh*(x) (1)

where M* and Q* are the bending moment and the shear force, p is the density, B, h* and w*
respectively denote the width, height and deflection of the beam.
Now we shall introduce the following quantities

X =85 b 1t
fal’a_l,ﬂ_l’ T_tl’
_h* 30V 6p* w
b= N =5l P NV ¥ T NI
_AM* o AQ*
M= (T()Bh22’ - 0'0Bh22‘ (2)

In these formulae oy and V stand for the yield stress and volume of the beam. The latter
quantity can be put into the form V =2Bh,lA, where A= ay+1- a. Since the volume V is
specified we have

v

hi = IBIA 3)

2BlA’ ho=

Making use of the formulae (2) and (3), eqns (1) acquire the following form (henceforth dots
will denote differentiation with respect to the dimensionless time 7):

f - Q" "g —2A%p +6AR(E)W. @)

In the present case we have two stages of loading: (1) the stage 0 < 7<1, where the load
acts, (2) the unloading stage 7> 1 in which the motion proceeds by inertia. First we shall
consider the loading stage 7 < 1. Since the load p has a constant value, a mode form solution
will be valid for this stage. Let us take the deflection rate field in the form (Fig. 1b):

(1-a)g+(a—B) for £€0,B]
W={(1-a)p+(a— & for £€[Ba]
1-8¢ for £€(a,1]. (5

Here a and ¢ stand for angular velocities, whose meaning follows from Fig. 1(b). In the
cross-sections ¢ = + @ and ¢ = + B plastic hinges can appear; the value of 8 will be found in the
following course of the solution. In the case of sufficiently high loads the formulae (5) become
invalid. Now the hinges £ =+ 8 appear in the thinner part of the beam and we have 8> a.
Besides, by increasing the load p the bending moment in the middle of the beam decreases and
can show there negative values. If in this region plastic hinges appear there the curves w = w(¢)
must be concave since in the opposite case the work, dissipated at the hinges, would not be
positive. Taking these facts into consideration we can postulate the following distribution for
the deflection rates (Fig. Ic):

(1=B)¢ + (B~ ) +(a OB for £€[0,a]
W=1(1-B)é +(B~ Y for {€{a, B}
(1-8¢ for £€(B,1] (6)

at which ¢ >0, <0, §<0.
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Since the bending moment cannot exceed its limit values, we have to fulfill the inequalities:
IM(¢&)|<y* for £€[0,a] and [M(§)|<1 for ¢€E[e,1]. Typical distribution of the bending
moment M(¢) for the cases a < 8 and a > 8 are given in Fig. 2.

Now we shall integrate eqns (4). For this purpose we must differentiate the formulae (5) or
(6) and insert the result into eqn (4). The integration constants must be calculated from the
boundary conditions Q*(0) = M(1)=0 and from the continuity conditions for Q* and M at
£=a and ¢ = B. Carrying out these calculations for the case 8> « and denoting

a=¢ R=4, S=6 @)
we get the following formulae

M(0)= A(A4,Q + B,R)+A%p
M(B)= A(A;Q + B;R) + A%p(1- %)
M(e)= A(A;Q + B;R) + A%p(1 - a?),

where

Ai=—(1-a)2(1- a)’+3ay2 - a)]

B, =9[f’3-B) -’ - )]

Ary=—(1-a){2l - o)’ +3y[a(2- a)- B}

B,=9y[B’3~-B)— a3 - a)+38%a - )]
As=-21-a)(1-a+3ay)

B;=-3y(1-a)(a’- B?). )]

According to Fig. 1(b) it must be M(0)<+vy*, M(B)<+7%, M(a)<1. In view of (8), these
inequalities can be put into the form

2
AQ+BR s“’X—Ap (10)
2
A,Q+B,R s—VA——Ap(l -8) (10)
1
AsQ+ ByR <3~ Ap(1 - . (10"

The case B> « can be treated in the analogous way. Here we have
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Fig. 2. Dependence of dimensionless bending moment on coordinate £; (a) case B <a, (b) case 8> a.




288 U. Lerk
The conditions M(0)= — %, M(a)=—1, M(8) = 1 can be put into the following form

AR+BS>S+ Dap (12)
Gs
=G
A(,R + B6S = X + DﬁAp, (12”)

where

Ag=2A1-BY(B ~ a)l(B — @) —3a’y], By= —da’y(1 - )

Ci=-2v11 —B)-2+4B+B*—6aB - 3(y — 1)a?

Dy=-(1~-BYIB(B ~2e) - 3(y— 1a’]

As=21-BY(B~a)’, Cs=~4(1- B +3(B-a) (13)
Ds=—(1-BY(B - a), Ag=(1-BY(B—a)2ay+B—a)

Bs=a’y(1-B), Cs=a(y—D+p

Dy=—(1-B)la(y -1+ B3]

3. FIRST STAGE OF MOTION
Let us examine which modes of beam motion will be realized in the first stage v <1. We
shall begin with the condition 8 < «; here we have the following five cases, for which the mode
forms are shown in Fig. 3.

Case 1

Here a plastic hinge appears at the centre ¢ =0 and we have 8 =0, Q = R. In the formula
(10) the inequality sign must be replaced by an equality sign: since C, =0, this equation takes
the.form

—p. Y —pA
Q=R=3771E5y (14)

The eqns (10) and (10') coincide; the expression (10”) must be satisfied as a strong inequality.
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Fig. 3. Mode forms for 8 <a.
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Case 2
Now plastic hinges occur at ¢ =+ a; consequently =0, R=0. Replacing in (10") the
inequality by an equality we obtain

Q =Ai3[%— A1~ a’)]- (15)

This case is valid when the inequality (10) is fulfilled.

Case 3

Here we have plastic hinges at the cross-sections £=0 and ¢é=*a. Again §=0 and
expressions (10) and (10") are satisfied as equalities; so we have two equations for calculating
the values of Q and R: the inequalities 0 <|R| < |Q| must be satisfied.

For cases 1-3 the bending moment has the maximum at £ =0, consequently 3Q*/¢ = 0 for
£=0. This requirement can be put into the form

pA=3y[(1-a)Q+aR]. (16)

Case 4

Here a stationary plastic hinge appears at ¢ =+ 8. Now we have M = * in the central
region 0 < |¢| < B. For this case Q = R, and the inequalities (10) and (10') turn into a system of
equations, from which the values of Q and 8 can be calculated. This case is realized, when
0 < B < a and the inequality (10") holds.

Case 5

Now let us assume plastic hinges appear at £ =+ 8 and ¢ = + a. In this case all expressions
(10)-(10") must be satisfied as equalities. So we get a system for calculating the quantities Q, R
and B. The inequalities 0 < 8 < & and 0<|R| <|Q| must hold.

Next we shall go over to the cases where B > a; some mode forms for this case are shown
in Fig. 4. For all these modes the quantity Q will be found from eqn (11).

Case 6
Here we have plastic hinges at £ = + 8; besides R = S = 0. The quantity 8 can be calculated
from eqn (12”). The conditions (12) and (12') must be satisfied as strong inequalities.

Case 7
In this case plastic hinges occur at £ =0 and ¢ == 8. Now R = S, the inequality sign in (12)
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Fig. 4. Mode forms for 8> a.
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has to be replaced by the sign of equality. The values of R and 8 can be found from (12) and
(12"). It occurs when R <0 and (12') is satisfied as a strong inequality.

Case 8

Here we have plastic hinges at £ = + a, £ =+ . In this case S =0; the quantities R and B
can be calculated from (12') and (12"), assuming that the inequality sign in (12') is again replaced
by a sign of equality. The expression (12) has to be satisfied as a strong inequality, whereas it
must be R <0.

Case 9

In this case we have plastic hinges at £ =0, ¢ = = a, £ = + 8. Now all inequalities (12)-(12")
turn into equalities and we get a system from which the values of R, S and a can be calculated.
The inequalities R < S < 0 must hold good.

The cases 6-9 do not comprise all possible cases for 8> a. For very high loads more
complicated modes appear and the number of plastic hinges can grow up to 8. Since such
modes are practically not very relevant, they are not considered in this paper. Nevertheless a
brief notice should be made of the limit case p -, t;—>0. Here the beam attains an impulse,
which according to the theorem of momentum can be found from the formula I=
2Blph*(x)v*(x), where v* denotes the initial velocity. In the case of a constant uniform
pressure we have h*(x)v*(x) = const. This condition can be transformed into the dimension-
less form hyv; = h,v, and we get the initial velocity field presented in Fig. 5(b). So we can see
that the homogeneous velocity field v = const (Fig. Sa) does not correspond. to the limit case
p-o, t;—>0. In spite of this the initial velocity distribution v = const will hold good for some
other problems (e.g. if the beam, moving with a constant velocity perpendicular to its axis, falls
upon the supports).

At the end of this section we shall find the deflection rates and the central deflection for the
instant = 1. Integrating eqns (7) we get ¢ = Qr, ¥ = Rr, 6 = S7. These results will be inserted
into eqns (5) and (6); taking =1 we find the velocity field w(¢ 1). Since ¢ =0.5Q7?
¢ =0.5Rr?, 6 =0.557* the central deflection at the end of the first stage is

_[0.5[(1 - a)Q + (e - B)R] for B<a
w0, D)= {0.5[(1 —B)Q+(B-a)R +aS] for B>a’ (17
4. MODE FORM SOLUTION FOR THE SECOND STAGE

After removing the load p, also a mode form solution will be valid. Generally of course the

motion in the first and second stages proceeds with different modes. Taking account of the

complicated form of modes for high loads (Fig. 4) the following question may arise: is it

well-founded in the second stage to confine ourselves only to the first modes; or do also higher

modes take place? An answer to this question was given in [6]: it was shown that the second

mode and likely also other higher modes are unstable and the motion always tends towards a

first mode form solution. On the grounds of this fact we shall assume that in the stage 7> 1

only the modes 1-3 from Fig. 3 will be realized. All that was said about the cases 1-3 in Section
3 holds good also for 7> 1.

The mode form solution for 7> 1 is not an exact one, since the continuity condition for rate

of deflections w is not fulfilled at = 1. Now we have to match the velocity fields at the end of

T T A #’E
a) ’ 1 v
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™

Fig. 5. Initial velocity fields in the case of impulsive loading.
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the first stage and at the beginning of the second stage. In the paper [4] this problem was solved
by equating the kinetic energies for both fields. As it follows from {3] more exact results can be
achieved by the method of Martin and Symonds{5].

It was shown in [5] that the modal solution #;(x, t) = T(¢)¢;(x) approximates for given initial
displacement rates & = #;(x, 0) the real problem in the best way, when the following condition
is fulfilled:

T(t) j(  phdv= f( P AV, i=1,23. (18)

For our problem we shall take £, =1, T(1) = 1; 4% will be the deflection rate at the end of the
first stage and ¢; the deflection rate at the beginning of the second state, i.e. 4= w(¢ 1-0),
& = Ww(£ 1+0). Let us mark the values of ¢, ¢, Q and R in the second stage with an asterisk.
For mode form solutions the relation ¢*: y* = Q* : R* holds. Calculating the velocity fields
from eqns (5) or (6) and inserting these results into (18) we obtain

¢:() _Lé())

0. L Q" (1)

The coefficients L, and L, will be calculated from the formulae:
L =2(1-a)’Bay+1-a)QQy+3a*y(1 - a)QR, +3y(1 - a)
X (a®— B)RQy + y(a — B)2a’ +2aB — B)RR, for B<a
Li=(1-B)6ay(l1-a)+2+28—B2—6a +3a21QQy +3a’y

X(1-B)QRy+(B—a)lbay(l1-a)+(B -~ a)3- B ~2a)]RQy +3a’y
X (B —a)RRy+3a’y(1 - a)SQy +2a>ySR, for B> a,

L,=2(1-a)'Bay+1- a)Qy% +6ay(1- a)QuR, +2a°yR, 2.

Let us assume that the motion stops at the instant ¢ = 7. By integrating the equation
¢4 = Q4 we obtain

¢(1) = ¢x()+ Qu(r, —1)=0

007 = o)+ 61, = D+ Qe ~ 17,

Eliminating the quantity 7, from these equations and taking into account the continuity of
deflections ¢(1) = ¢(1), we get
AN

. 2
(5= o(1) - 1L 0)

An analogous result also is valid for y(r).

The residual central deflection will be found by integrating the second formula of (5); since
B =0, we obtain

w(0, 1) = w(0, 1) + (1 — a)e(7) — (D] + a[¢(z) — ¥(1)]
In view of (19) and (20) this result can be put into the form
L 2
w(0, t;) = w(0,1) - O.S(f;) [(1-a)Qy+ aR,l. 21

We sl}all calcul.ate the quantity w(0, 1) in this formula according to eqns (17).
It is convenient to mark the regimes of motion by two numbers; they show which of the cases
S8 Vol. 18, No. +—B
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1-9 participates in the loading and unloading stages. So number 72 (for example) tells us that for
P+# 0 the mode form 7 and for P =0 the mode form 2 are realized.

5. EXACT SOLUTION

The results, obtained in Section 3 remain valid also for the loading stage in case of the exact
solution. For the second stage we must construct a solution which guarantees the continuity of
the deflection rates at 7= 1. The deflection rate fields from Figs. 3 and 4 can also be used for
7> 1, only now moving hinges at the cross-sections ¢ = + 8 may appear. In order to distinguish
all possible regimes of motion, we shall use the following notation. Each regime is marked by a set
of numbers; the first number shows the form of motion from Figs. 3 and 4 which takes place in the
loading stage, the following numbers indicate the subsequence of motion forms for the second
stage. The first number of the set also determines the number of the corresponding case (this
numeration of cases is in accordance with Section 3). It follows from theoretical considerations and
numerical calculations, that the following regimes of motion are possible.

Case 1
Here we have the mode form solution 11. The other possible regime 132 was not observed in
carrying out the numerical calculations.

Case 2
In this case the motion in the second state 7> 1 is more complicated. Let us introduce the
functions

F(a,y)=3a’y=2(1-a)y* = D)Bay+1-«a) 22)
Gla, y) = a’y— (1~ a)(¥* -~ DB3ay +2(1 - a)l.

It was shown in paper [3] that three following subcases can be realized:
(i) if F <0 the mode form solution 22 holds good;
(i) if F>0and g <0 we have the regime 231;
@iii) if G > 0 the regime 2541 takes place.
The equations of motion (4) were integrated for these subcases in paper [3].

Case 3
Here we have the regimes 331 and 332 (the latter did not occur within the considered ranges
of a and v).

Case 4
The regime 441 will be valid.

Case 5
Here the regimes 5531 and 5541 take place.

Case 6
In the unloading stage we have at first the motion form 6; it lasts until 8 = a. The following
motion proceeds according to case 2.

Cases 7 and 8
Here we have respectively motion forms 7 or 8. These go over to form 6 and the following

motion proceeds as shown in the case 6.

Case 9

In this case the motion form 9 goes over to form 7; the motion further proceeds in
conformity with case 7.

Now we have to integrate the equations of motion (4). For the motion forms 1-6 it can be
done analytically (for details consult the paper[3], mentioned above). As to the forms 7-9, eqns
(7)~(9) must be integrated numerically (e.g. by the method of Runge-Kutta). For the sake of
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conciseness the details of this work are not given here. For all regimes of motion the values of
residual central deflection were calculated. Of course, the results are valid only if the limit
values of the bending moments are not exceeded, in other words, the inequalities |M| < y* for
£€(0,a) and [M|<1 for {E(a,1) must be fulfilled. The validity of these inequalities was
checked for each form of motion.

6. DISCUSSION

Let us first examine the case of a beam with uniform thickness, taking y = 1. For dimension-
less pressure p <3 the regime 11 is realized and we have Q=R=05(p —1). If p>3 the
regime 41 takes place and we obtain

o=1-G) o-r-(3)"

For both cases Q4 = Ry = S, =—0.5. It follows from the formulae (17) and (21) that

Lo-1 for p<3
w(0, 7) =
%[2;; +3(p—1Y] for p>3. 3)
The exact solution gives
%(p -1) for p<3
W(O, Tf) =
%(4p -3) for p>3. 24

If we take p = 6, the mode form solution has an error of 3.6%; increasing the load the error
also increases; so for p =12 it is 7.5% and in the limit case p —»« we have 12.5%.

Now let us pass over to the general case y# 1. To begin with, we fix the parameter a taking
a =0.8. The beam’s width B is specified, the quantity A, is changing with y. Some calculations,
which were carried out on computer for three values of p, are presented in Fig. 6. The symbol
W in this figure denotes the ratio of central residual deflections for stepped and uniform beams.
Above the horizontal axis sets of numbers characterizing the regimes of motion, which take
place at the corresponding value of vy, are given. On the grounds of Fig. 6 the following
consequences can be drawn.

(i) As was shown before[1,3] in case of mode form solutions we have interval of
non-uniqueness y, < y < y*, where three modes coexist. In case of the exact solution the
function W = W(y) is always unique.

(ii) In the case of the exact solution the beam motion always terminates in the mode forms
1 or 2 from Fig. 3. It is interesting to note that when the motion ends with form 2, the results
obtained by the method of mode form solutions almost coincide with exact solutions, but in the
opposite case, when motion stops with form 1 accordance between the two solutions is
considerably worse. In order to clarify this fact we shall examine the role of each phase of
motion on the residual deflections of the second stage 7> 1.

If the motion stops with the mode form 2, then the main part of detlections is obtained
namely during this phase. Taking for instance p =20 and y =1.8 we have regime 662; the
calculations show that 98.8% of the residual deflection in the second stage is attained in the
phase 2. For the second example we choose p =50, y = 1.8; now the regime 7762 is realized.
From the deflections in the second stage 2.2% are obtained in phase 7; 2.7% in phase 6 and
95.1% in the modal phase 2. On the grounds of these numerical examples it is clear why the
mode form solution has such high exactness.

Now we shall consider the cases where the motion terminates in form 1. If the load is
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Fig. 6. Dependence of dimensionless deflections W on y for a =0.8; 1, exact solution; 2, mode form
solution.

sufficiently high, this mode is succeeded by the form of motion 3. This is not a mode, since the
relation ¢ : ¢ is variable. It follows from the calculations that during this nonmodal form a
considerable part of deflection is attained and therefore a mode form solution cannot be
guarantee the necessary exactness. As an illustrative example, we shall take p =50, y = 1.6.
Now we have the regime 6631; to the form 6 correspond 3.9% of the central deflection, to form
3,70.1% and to the mode form 1, only 20.0%.

(iii) The curves 1 and 2 from Fig. 6 have minima at the same value of y. This value can be
calculated from the equation F(a, y) = 0, where the function F(a, y) is defined according to the
first formula of (22). It also follows from Fig. 6 that the minima of the function W in the case of
the exact and mode form solutions differ insignificantly.

Now let us vary both parameters a and y. Optimal values of these parameters for different
loads are given in Table 1. (The limit case p -« corresponds to the initial velocity field given in

Table 1.

]
R

¥ w

0.74 1.51 0.49
0.75 1.54 0.53
0.76 1.56 0.59
0.76 1.58 0.62
20 077 1.62 0.64
50 079 1.68 0.65
kS 0.82 1.79 0.67

—_
[—JAV VS ]
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Fig. 5b.) It follows from the last column of the table that the reduction of deflection with respect
to the beam of constant height is from 33 up to 51%. The quantities in Table 1 were calculated
on the basis of the method of the mode form solutions, but it should be mentioned that they differ
from the exact values trivially (e.g. for p = 50 the mode form solution gives W = 0.654 while in
the case of an exact solution we have W = 0.653).

It was shown in paper [3] that when we move along the curve F(a, y) =0, the value of W in
the minium point alters very little. This conclusion is also valid for the problem discussed in this
paper. Numerical calculations show that if we change the parameter y in the interval
1.3 < y < 2.4 the values of W do not differ from their minimal values more than 5%. So there is
no need to determine the exact optimal values for « and y; it is enough to calculate the
approximate optimal value for one parameter and find the other parameter from the equation
F(a,v)=0.

7. CONCLUSIONS

This paper completes a series of research work[1-4] about optimal design of rigid-plastic
stepped simply supported beams. The cases of impulsive and dynamic pressure loading were
considered. For integrating the equations of motion the method of mode form solutions was
applied. In order to obtain error estimation for this method, also exact solutions were found. It
was shown that the results which have been found by this method of mode form solutions
coincide well with the exact solutions, when the velocity distribution has in the last phase of
motion a trapezoidal form (for a triangular velocity distribution the accordance is much worse).
Since in the case of an optimal solution the motion always terminates in a trapezoidal mode, the
method of mode form solutions guarantees high exactness. Besides, it was shown that along the
curve F(a, y)=0 the deflections near the extreme point change insignificantly; this fact
substantially enlarges the possibilities for optimal design of beams in question. So we can see
that the method of mode form solutions in addition to its simplicity is fully reliable and it could
be applied more widely than before for solving some complicated optimization problems.
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